Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Ulrich Flörke,* Thorsten Röder and Thomas Kramer

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.026$
$w R$ factor $=0.049$
Data-to-parameter ratio $=24.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## 3-(Isobutyryloxy)propanaminium bromide

The crystal packing in the title compound, $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, shows $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ intermolecular hydrogen bonds, which give rise to stacking of the cations, as well as $\mathrm{Br}^{-}$ anions in rows along [010].

## Comment

The title compound, (I), has been synthesized during a series of experiments to investigate the properties of surfactant esters of isobutyric acid and $\omega$-trimethylammonium alcohols (Röder \& Kramer, 2004). Accordingly, the alkyl chain length of the alcohol has been varied systematically. The propyl ester is that with the shortest chain. The longest one (decyl ester) shows a lyotropic mesophase (Hiltrop, 1994).

(I)

The molecular structure of (I) (Fig. 1) exhibits a folded conformation, with an $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ torsion angle of $-53.3(2)^{\circ}$. This structure is related to that of the acetoxy compound 3-acetoxypropyltrimethylammonium bromide (Craven \& Hite, 1973). The C5/O2/C4/O1/C3 ester group is planar, with a maximum deviation from the mean plane of 0.012 (1) A for atom O2. An intramolecular C5-H5B . . O1 hydrogen bond stabilizes this conformation, with $\mathrm{H} \cdots \mathrm{O}$ $2.39 \AA$. In general, bond lengths and angles (Table 1) lie in expected ranges and need no further discussion.

The crystal packing of (I) (Fig. 2) shows various intermolecular hydrogen bonds, with molecules stacked in rows along [010], and $\mathrm{NMe}_{3}$ groups head-to-head and oriented in


Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.

Received 7 October 2004 Accepted 8 October 2004 Online 16 October 2004


Figure 2
The crystal packing of (I), viewed along [010], with the intermolecular hydrogen-bonding pattern indicated by dashed lines.
the [100] direction. Prominent interactions are C7$\mathrm{H} 7 A \cdots \mathrm{O} 1\left(x, \frac{1}{2}-y, z+\frac{1}{2}\right)$, with $\mathrm{H} \cdots \mathrm{O} 2.32 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ $145^{\circ}$, and four $\mathrm{H} \cdots \mathrm{Br}$ contacts, $\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{Br}(x, y-1, z)$ $(2.73 \AA), \mathrm{C} 8-\mathrm{H} 8 A \cdots \operatorname{Br}\left(1-x, y-\frac{1}{2}, \frac{3}{2}-z\right)(2.83 \AA), \mathrm{C} 7-$ $\mathrm{H} 7 B \cdots \operatorname{Br}(x, y-1, z)(2.84 \AA)$ and $\mathrm{C} 9-\mathrm{H} 9 \mathrm{C} \cdots \operatorname{Br}\left(x, \frac{1}{2}-y\right.$, $\left.z+\frac{1}{2}\right)(2.89 \AA)$. All H -atom positions were normalized to $\mathrm{C}-$ $\mathrm{H}=1.08 \AA$.

## Experimental

The synthesis of (I) was performed according to the method of Röder \& Kramer (2004). After dissolving the compound in acetonitrile and allowing the solvent to evaporate slowly, fine prismatic crystals were obtained.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Br}^{-} \\
& M_{r}=268.20 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=16.715(14) \AA \\
& b=7.0370(6) \AA \\
& c=11.708(1) \AA \\
& \beta=107.979(2)^{\circ} \\
& V=1311.18(19) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.359 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3012 reflections
$\theta=2.6-27.8^{\circ}$
$\mu=3.12 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colourless
$0.30 \times 0.15 \times 0.08 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.581, T_{\text {max }}=0.782$
12047 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.049$
$S=0.84$
3276 reflections
132 parameters

3276 independent reflections
2321 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-22 \rightarrow 22$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 13$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

| O1-C4 | $1.198(2)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.514(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{O} 2-\mathrm{C} 4$ | $1.346(2)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.506(2)$ |
| $\mathrm{O} 2-\mathrm{C} 5$ | $1.448(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.518(3)$ |
| $\mathrm{N} 1-\mathrm{C} 7$ | $1.508(2)$ |  |  |
| $\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 5$ | $116.38(16)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $109.65(16)$ |
| $\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$ | $110.52(19)$ | $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ | $115.20(14)$ |
| $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$ | $111.91(15)$ |  |  |

H atoms were located in difference Fourier maps and then placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.98-0.99 \mathrm{~A}$, and treated as riding on their attached C atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}\left(\mathrm{C}\right.$-methyl). All $\mathrm{CH}_{3}$ groups were allowed to rotate but not to tip.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

## References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Craven, B. M. \& Hite, G. (1973). Acta Cryst. B29, 1132-1136.
Hiltrop, K. (1994). Lyotropic Liquid Crystals. In Liquid Crystals, edited by H. Stegemeyer, pp. 143-172. Darmstadt, New York: Steinkopf \& Springer.
Röder, T. \& Kramer, T. (2004). Synth. Commun. 34, 3645-3651.

